OCT 4 – 6, 2015 • Queens University • Kingston, ON Canada Challenges and Innovations in Tunnelling

Data management for probabilistic tunnel modelling

Josephine Morgenroth, EIT, MASc Candidate Supervisor: Dr. Dwayne Tannant

October 5th, 2015

Overview

Case Study - Kemano hydroelectric project

- Located ~600 km north of Vancouver
- 8 turbines in powerhouse inside Mount DuBose
- 860 m of pressure head
- \$500 million of capital and 6,000 construction workers in 1950
- \$11 billion worth of infrastructure today

Site Infrastructure

Reversal of the Nechako River by constructing Kenney Dam

View of camp from 2600' Portal

Water Conveyance Tunnels

• Parallel, 16 km long tunnels

Source: Hatch Ltd.

Drill and Blast Excavation (T1)

Source: http://www.kitimatmuseum.ca/node/37

Geological Conditions (D/S T2)

Source: Hatch Ltd.

Coast Intrusions - Granodiorite and diorite

Hazelton group (metasedimentary)

Horetzky dyke (diorite intrusion)

	Principal		Tangential		1
	σ ₁ (MPa)	σ₃ (MPa)	σ _{max} (MPa)	σ _{min} (MPa)	K ratio
T1	27.0	10.9	70.2	5.6	2.5
T2	27.5	6.6	76.0	-7.7	4.2

Major Principal Stress Orientations

Field Observations

Relation to Research

- Development, calibration and application of Bayesian Network
- Statistical analysis of ground class parameters along tunnel alignment to use as inputs

Bayesian Networks

- Probabilistic frameworks used to determine the conditional dependencies between random input variables
- Variables are discretized into "states"
- Evaluate these variable dependencies over iterations or time-steps ("Dynamic" Bayesian Network)

Geological and Ground Class Prediction using a DBN

Predict the geological conditions at a particular slice of the tunnel,
 and then use this to predict conditions at the next slice

Geological Conditions (D/S T2)

Source: Hatch Ltd.

Coast Intrusions - Granodiorite and diorite

Next Step: Ground Class → **Support Class**

Support Class	Dowels/Bolts	Shotcrete	Wire Welded Fabric	Other		
I	Unsupported					
II	2.5m long, 25mm dia. grouted dowels, 1.5 m c/c 10 to 2 o'clock	75 mm minimum	-	-		
Ш	2.5m long, 25mm dia. grouted dowels, 1.5 m c/c Springline to springline	75 mm minimum	4 in. squares or FRS	-		
IV	2.5m long, 25mm dia. grouted dowels, 1 m c/c 5 to 7 o'clock	100 mm minimum	4 in. squares or FRS	Steel sets		

Research Summary

Kemano case study

Ground Class

(as a function of tunnel chainage)

Support Class

(as a function of tunnel chainage)

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA

